
AberdeenGroup 
 

 

 

 

 

 

 

 

 

 

 

Imperatives for a New 
Development Age: The 
Party’s Over  

An Executive White Paper 

January 2004 

 

 

 

Aberdeen Group, Inc. 
260 Franklin Street 
Boston, Massachusetts 02110 USA 
Telephone: 617 723 7890 
Fax: 617 723 7897 
www.aberdeen.com 



Imperatives for a New Development Age: The Party's 
Over 

 

Executive Overview 
Today, Internet development enthusiasm has been replaced in many IT shops with 
gloom. Slower economies are leading to cost-cutting pressures that impact primarily 
on new technology spending, and secondarily on application development. Because 
enterprises cannot live by cost-cutting alone, IT strategists are also increasingly seek-
ing to create competitive advantage cost-effectively, not only by creating new appli-
cations but also by leveraging existing proprietary information. 

IT strategists’ new imperatives, in turn, create new typical development patterns. 
Developers now often upgrade as well as create “from scratch,” allowing develop-
ment managers to cut project costs. Developers seek shorter development life cy-
cles, letting IT organizations change directions in response to changing user re-
quirements. Above all, developers try out “agile programming,” rather than the ever-
increasing formalism of traditional methodologies, to avoid “paralysis by analysis.” 

This White Paper describes the new development-solution requirements that these 
new development patterns are creating. We use as an example the Four J’s develop-
ment solution, which supports agile and cost-effective programming, making devel-
opment cycles short and allowing easy upgrades and changes. 

Internet Tools Do Not Meet the New Needs 
Many major ISVs and IT shops continue to keep Java and object-oriented program-
ming as their primary development focus  a focus that has arisen because these 
technologies are perceived as especially suited to Internet application development. 
These Internet tools are not adequate by themselves to meet the new development 
demands. They are particularly lacking in three key areas: 

1. Internet tools are not programmer-productive. In and of themselves, they do 
less well at delivering shorter development life cycles and lower development 
costs than other available technologies. 

2. Today’s Internet tools are less able to leverage proprietary data sources than 
technologies that are purpose-built for data access. 

3. Although flexible for small development projects, low-level Internet tools ap-
plied to large-scale enterprise-application development and upgrades do not 
support rapid development/upgrade or rapid changes in direction as well as 
alternative technologies. 

As a result, in its recent report, Web Services Development Solutions Buying Guide, 
Aberdeen recommended that today’s major toolsets be supplemented with third-
party tools to increase their programmer productivity, flexibility, and ability to lever-
age key data. 

 



Imperatives for a New Development Age: The Party’s Over  2 

Programmer Productivity Problems 
Over the last 10 years, Aberdeen research shows that programmer productivity first 
significantly increased and then dropped. In the first productivity phase, develop-
ment tool ISVs created GUI-driven, drag-and-drop, point-and-click visual program-
ming environments (VPEs) that automatically generated code to support popular 
GUIs — such as Windows or Motif — and backed these tools with data-access code-
generation features that allowed users to create transactional code “from the screen 
definition” at a very high level. 

The sudden popularity of the Java 3GL put an abrupt halt to VPE use. Sun’s Java 
toolkit, Macromedia’s Dreamweaver, and other such tools took programmers back 
to the days of laboriously hand-coding programs. 

To understand why Java and object-oriented programming have been relatively inef-
fective, ISVs and IT buyers should begin by understanding the typical development 
life cycle. For procedural code, on average, 25% of the time is spent in design, 45% 
in coding, 20% in testing, and 10% in deployment. By comparison, an object-
oriented programmer will (theoretically) take more time in design but less time cod-
ing and testing. Note that object-oriented programs typically require somewhat less 
code, so they may be produced faster, but they still offer only the same programmer 
productivity as procedural 3GLs in terms of lines of code per day — e.g., 10% plus 
and minus, for a net time savings of 10%. Also note that attempts to apply reusability 
in Java programming achieve only a 5% to 15% maximum improvement in pro-
grammer productivity and may actually decrease it (see the Aberdeen InSight titled 
Programmer Productivity Reconsidered: Reusability Considered Harmful  Refac-
toring Not). 

By looking at the places in the development cycle that a particular technique will af-
fect, the ISV or IT buyer can determine whether the effect is likely to be marginal 
(10% to 20% time saved) or fundamental (50% to 95% time saved). In the example 
cited above, object-oriented programming is likely to save 10% to 20% of the time-
to-production of a typical development project. Table 1 shows the best that can rea-
sonably be expected of today’s key programmer-productivity techniques. 

Table 1: The Programmer-Productivity Effects of Today’s Techniques 

Technique Life Cycle Stages Affected 
Likely Maximum 
Time Saved (%) 

Object-oriented programming Design (+), coding, testing 10%-20% 
Automated deployment Deployment 10% 
Higher level coding 
 - transactional code generation 
 - VPE 
 - standards-based 

 
Design (data-driven), coding, testing 
Design (GUI-driven), coding, testing 
coding, testing 

 
50%-70% 
50%-80% 
10%-20% 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  3 

Technique Life Cycle Stages Affected 
Likely Maximum 
Time Saved (%) 

Reusability Coding, testing 5%-15% 
Open source programming Coding, testing 20%-30% 
Components Design (+/-), coding, testing (small -) 5%-15% 
Infrastructure solutions Design, coding, testing 50%-80% 
Extreme programming Design, coding, testing 10%-30% 

Source: Aberdeen Group, January 2004 

As the Table shows, today’s popular Web programming techniques — such as com-
ponent-based programming, object-oriented programming, and formal object-
oriented design — yield less potential improvement in programmer productivity 
than techniques such as VPEs and data-access code generation. 

The Object-Relational Mismatch 
Developers’ difficulties in integrating code with databases are now greater than ever, 
primarily owing to the increasing proportion of development that is object oriented 
rather than procedural. Object-oriented code, by its very nature, consists of small 
bits of code inextricably wedded to small bits of data. Most of today’s data, by con-
trast, is stored in large, often relational databases that are completely divorced from 
code. The fundamental difference between the two is sometimes called the “object-
relational mismatch.” To bridge that difference, developers must perform an awk-
ward translation between objects and databases. Some studies estimate that the 
amount of the code in an application devoted to bridging the object-relational gap 
can be 30% to 40%. 

The user’s newfound need to leverage information in existing databases via Web ser-
vices places a heavy burden on both the development toolset and the database to 
help bridge the gap. Typically, Internet toolsets offer one or more of three ap-
proaches: 

1. Hide the details of data access within common components — often EJBs 
 that the developer may invoke without knowing their contents 

2. Support standard database-access mechanisms, such as ODBC/JDBC and 
SQL, with developers coding the rest of the translation 

3. Store the data in the database as objects and provide “object-oriented” ac-
cess mechanisms, such as XQuery 

None of these is an entirely satisfactory solution to the object-relational mismatch. 

1. EJBs create performance problems. They are, typically, not customized for 
particular types of users, and they can make optimization of the “pipe” be-

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  4 

tween the code and the database more difficult. Maintaining persistence over 
multiple servers draws on system memory resources, too, which impairs scal-
ability. EJBs also are often not easily customizable for the needs of a particular 
data-access transaction. 

2. ODBC/JDBC and SQL are relational in nature, requiring the developer to do 
most, if not all, of the translation between object and relational data, 

3. Although most major databases now support storage of “object” data and “ob-
ject-oriented” access mechanisms, most databases would like to continue to 
support SQL access to the same data as well. Therefore, using this approach 
can depend on the good will of a database administrator who might be disin-
clined to upset a carefully balanced database design by adding complex new 
features. 

Flexibility Problems 
As the size of an object-oriented application increases, the developer must deal 
with more object classes. Some enterprise developers report that difficulties in 
creating or reusing object classes become significant when the number of classes 
involved reaches about 1,000. Often, Java and other object-oriented toolsets do 
not provide good text-search tools to support class library searches, and the com-
menting of the typical programmer does not support text searching. The result is 
that larger projects can engender “paralysis by analysis,” as programmers endlessly 
debate what classes should be created. 

Problems with Java 
As the language of choice for many of today’s enterprise application development 
efforts, Java faces all of these problems and more. As a 3GL, Java is less program-
mer productive. As an object-oriented language, Java creates an object-relational 
impedance mismatch. Difficulties in searching today’s large standard-object-heavy 
Java class libraries make reuse particularly difficult, causing paralysis by analysis 
that can decrease flexibility and programmer productivity. Moreover, programmers 
experienced in interfacing with existing data sources are often “straight-line” pro-
grammers, for whom learning object-oriented programming requires a culture 
shift that many find difficult to accomplish. 

The New Criteria for Development Solutions: Agile Programming 
If Internet tools will not do the job by themselves, what should ISVs or IT buyers 
look for in a development solution to handle the new imperatives? Aberdeen sug-
gests that they should seek agile development solutions that stress simplicity and 
the ability to change development directions rapidly. 

Agile programming is a concept that has gained considerable attention in the last 
few years, as many developers express frustration with overly formalized develop-

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  5 

ment approaches that encourage inflexibility. The core “philosophy” of agile pro-
gramming is as follows: 

1. Empowering individual programmers and collaborative programming 
rather than constraining developers by formal techniques and processes 

2. Interacting with customers rather than “working to spec” 

3. Rapidly adapting to changes in requirements rather than sticking with a 
one-time implementation of an unchanged plan 

Particular attempts to implement a more concrete approach to agile programming 
include DSDM’s (Dynamic System Development Method) “nine principles,” the 12 
rules of extreme programming, and a technique called refactoring that allows 
semiautomatic “repartitioning” of object classes to ease the upgrading process. Key 
requirements that tools should meet to support agile programming include the 
following: 

• Support for frequent delivery of products 

• Emphasis on alignment with business rules, processes, and strategy 
rather than narrow coding objectives 

• Support for close interaction with end-users in the development 
process; e.g., by being able to generate visual representations of the 
finished application rapidly 

• Iterative, incremental development support 

• Support for collaboration both within the programming group and 
with outside “stakeholders 

• Tools that simplify program design 

It should be emphasized that agile programming does not require users to choose 
development tools that follow a particular approach religiously, such as extreme 
programming. However, the choice of a tool is of particular importance in being 
able to implement agile programming effectively. Most of today’s major toolsets 
often encourage formal design and architectural complexity that increase inflexibil-
ity. 

Table 2 lists criteria that users should consider when contemplating new develop-
ment solutions. 

Table 2: Criteria/Technologies for New Development Solutions 

Criterion Related Technologies 
Performance/-
Scalability 

Transactional scalability technologies 
- Ability to access a scalable database (object-relational matching) 

Development scalability technologies  
- Project management and version control 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  6 

Criterion Related Technologies 
- Collaborative programming 

Flexibility Cross-database APIs (especially for portals) 
Support for legacy applications and legacy application upgrades 
Open standard support  

 - SOAP/XML 
 - UDDI 
 - WSDL 
 - Related standards 

Integration with databases  
- Avoiding object-relational mismatch  
- ODBC/JDBC or native driver support 

Integration with infrastructure software 
- Application servers  
- Infrastructure APIs, such as Web Services and component libraries 

“Agile programming” techniques 
Programmer-
productivity Support 
support 

4GLs, metacode, and omnicompetence 
Open source programming 
Components and infrastructure solutions 

Life Cycle Support Design 
 - Metadata-driven development 
 - Three-way design (code, UI, data) 

Coding 
 - Incremental compilers 

Testing 
 - Unit, load, performance, stress/volume 

Deployment  
 - Automated application deployment 

Maintenance 
 - Rapid upgrade and application monitoring 
 - Robustness and automated application administration 

Automated program generation 

Source: Aberdeen Group, January 2004 

Scalability 
Inevitably, the number of users of a successful program expands. As this number 
grows, so does the size of the database the program uses and the performance re-
quirements of the program. Effective implementers anticipate the need for scalability 
before beginning to code a program, and, therefore, build larger programs that re-
quire more developers to create. Thus, performance/scalability in the long term re-
quires a toolset with the ability to scale in the following two dimensions: 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  7 

1. Support tens and even hundreds of developers working on the same pro-
ject 

2. Anticipate future increases in demand and writing the program so that it 
can handle those increases in demand — a demand that is typically evi-
denced as databases in the megabyte to terabyte range and concurrent users 
ranging from 100 to 100,000. 

Over the last five years, the “new frontier” of application scalability has been the 
Web, in which the number of users accessing a Web-enabled application can move 
rapidly from 0 to 100,000. Over the next five years, the main challenges to applica-
tions’ ability to scale will likewise come from elaborations of the Web, such as Web 
services. Experience has shown that the greatest barrier to scaling a Web applica-
tion is scaling transactional operations accessing a database. Therefore, if a de-
velopment toolset offers the best possible tools for creating scalable transactions 
accessing a scalable database, that toolset is highly likely to deliver the best possi-
ble application scalability. 

Programmer Productivity 
Beyond a certain size, applications inevitably have to deal with large amounts of 
data, which, in turn, call for databases. Interfacing code to data is among the tough-
est programming jobs at any time, and object-relational mismatch has made things 
only worse. 

Experience has shown that high-level, semiautomated data-access code generation is 
especially effective in improving programmer productivity, and especially for scalable 
application development. One effective approach to high-level transactional code 
generation is the idea of metacode, as coined by Simon Williams in his book, The 
Associative Model of Data (Lazy Software Ltd., 2002, p. 139) — code that operates 
on data at the metadata level, without needing to know the details of how the corre-
sponding data is stored on disk. Where the purpose of a program is to access and 
display data, metacode can be combined with data-driven design, an approach that 
generates code directly from the metadata stored in a database’s data dictionary. 

Another high-level coding technique that leads to programmer productivity — espe-
cially when combined with high-level transactional code generation — is the VPE. In 
a VPE, the developer drags and drops various display elements on to a “blank” GUI 
or Web browser page, and the toolset semiautomatically generates the back-end 
server code and data-access code to support these elements. For simple applica-
tions, a VPE is exceptionally programmer productive, but as the application scales in 
code complexity and database size, the VPE does not scale with it. However, by 
combining the ability to generate transactional code for each element in a display 
semiautomatically with the VPE, the developer can get the “best of both agile 
worlds” — rapid generation of visual representations of an application plus scalable 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  8 

connections to a wealth of business-critical back-end information. VPEs are now 
typically subsets of what is now being termed the UDE (Unified Development Envi-
ronment), which seamlessly combines other programming tools — such as project 
management, code generation, and developer collaboration — under a common 
interface. 

In addition, a VPE by itself is best applied when particular pages of a multi-Web-page 
application are simple and straightforward, as in initial Web site authoring. In these 
situations, a VPE has the added benefit of focusing the developer from the start on 
end-user friendliness, a key attribute of successful Web applications. 

High-level transactional code generation, VPEs, and similar high-level programming 
can deliver much higher programmer productivity (Table 1). ISVs or IT buyers 
should favor tools that do not require developers to concern themselves with the 
storage details of database data. At the very least, toolsets that support standard SQL, 
data-access wizards, transactional code generation, and data-driven design function-
ality are far better. 

Life Cycle Support 
Development solutions that support an application’s life cycle, including design, 
coding, and testing, increase the quality and robustness of software by avoiding bugs 
created by poor “hand-offs” between stages of the software life cycle. Moreover, a 
toolset that supports the development life cycle is in a good position to automati-
cally generate a finished application from its design or from very high level code. 
Automatic code generation, as noted in Table 1, dramatically increases programmer 
productivity, often improving application quality, scalability, and programmer flexi-
bility. 

Flexibility 
Flexibility in a development tool includes, traditionally, the notion of portability of 
developed applications based on open standards. It also includes the following: 

• The ability to “change directions” rapidly and easily in the middle of a project 
owing to changing end-user requirements, platforms, or development tool 
capabilities — a key concept of agile programming 

• The ability to invoke, and have developed applications integrate with, key re-
lated software infrastructure, such as application servers, databases, and Web 
services repositories 

Together, these types of flexibilities allow development solutions to deliver applica-
tions that not only can run out of the box in a wide variety of situations but also can 
be upgraded later to incorporate new technologies more rapidly and at much lower 
cost. 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  9 

Over the last five years, the importance of flexibility in a development solution has 
increased dramatically, and the relative importance of each type of flexibility has 
changed sharply. The advent of the Web has made it child’s play to “write once, de-
ploy many” applications with the widest possible accessibility to end-users, and 
which run on all major platforms. As a result, the remaining portability difficulty is 
deploying the new technology to existing mission-critical “legacy” applications that 
usually run in client-server or host/mainframe environments. Meanwhile, the focus 
in the standards arena has shifted mainly toward creating higher level standards that 
increase programmer productivity. 

The advent of a highly complicated and distributed Web software infrastructure has 
also made the job of the programmer more difficult. Integration with certain new 
parts of the infrastructure, such as application servers, and certain older parts whose 
role has changed, such as databases, means that the development tool must sup-
plement the developer’s expertise in integration to a far greater degree. The oncom-
ing decision about whether to “Web-servicize” infrastructure before integrating with 
it will make the development tool’s support for integration even more important in 
the next three years. 

However, Aberdeen boldly asserts that the most important type of flexibility today 
and in the near future  and very possibly the most important development-
solution feature  is the ability to change existing code to incorporate new tech-
nologies in an agile fashion. The aftermath of the first flush of Internet enthusiasm 
is an enormous body of legacy object-oriented code, and we anticipate that Web ser-
vices will create a second wave of similar code. This code is already proving resistant 
to upgrade, and a key job of IT or packaged-application suppliers over the next few 
years will be to upgrade and Web-servicize existing code so that it is more “agile,” as 
well as to develop new Web services that have agility already baked in. 

We, therefore, recommend that ISVs and IT buyers place less emphasis than in the 
past on open standards support and more emphasis on integration, agility, and 
flexibility in general. 

Key New Approaches: Software Evolution 
The effective software evolution strategist should view the application portfolio as 
a kind of garden, in which some applications are to be added, some applications 
are to be grown or pruned, and some are to be cut down, but none are to be left 
untended or thrown away. 

As ISV executives and IT executives look toward the major application-portfolio 
tasks of the next two to three years, such a “gardening approach” to software evo-
lution strategy would suggest that they do the following periodically: 

• Perform a software audit to determine what existing, not-yet-Web-
enabled or Web-servicized applications they have 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  10 

• Triage the applications into three categories: “buy a new one,” “im-
prove/evolve,” and “leave alone” 

• Target improvements to bring “evolved” applications into synchroniza-
tion with the latest technology 

The Benefits of Software Evolution 
At the level of the individual application, one key business benefit of evolving the 
software is that the ISV or IT executive is better able to cut software inventory costs 
and to turn a vicious circle of increasing costs into a virtuous circle of decreasing 
ones. Moreover, “evolutionary” development allows programmers to reuse more 
time-tested code, improving programmer productivity and reducing development 
costs. Effective software evolution has other major business benefits as well, in-
cluding the following: 

• Decreased administrative and learning costs — By allowing more im-
provement of legacy applications, evolution allows enterprises to cut 
down on the number of platforms and environments supported and on 
training costs for developers and administrators. 

• Increased flexibility in meeting users’ needs — By evolving a legacy ap-
plication, the ISV or IT executive extends the application’s useful life 
while adapting it to users’ needs rather than having to rewrite it. By al-
lowing improvement, a software evolution strategy gives the ISV or IT 
executive more options when a legacy application’s cost outweighs its 
benefits. 

• Ability to use the information captured by the toolset in other IT areas 
— Improvement tools give the enterprise never-before-collected infor-
mation on its key legacy applications, including data on heretofore un-
detected errors, information on business rules and code logic, and — if 
combined with an asset management system — an inventory of the en-
terprise’s application assets. Users of software configuration manage-
ment systems, for example, typically use their new knowledge to in-
crease the reuse of old code in new application development; to provide 
better audit/monitoring information to the administrator of an enter-
prise architecture; to make the development process more rapid flexi-
ble, and robust; and to drive ISV or IT software strategies, including 
software-evolution strategies. 

Above all, effective software evolution allows an enterprise to access its proprietary 
content via existing code and applications more effectively. That improved access is 
particularly true for the enterprise’s Web and Web service solutions, and evolution 
via “upgrade in place” can help the linked legacy applications satisfy today’s key 
Web success criteria: scalability/availability, flexibility, and rapid development. 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  11 

Applied across the enterprise’s software portfolio, a software evolution strategy 
can have the following additional benefits: 

• It extends the benefits of evolution to the entire software portfolio. 

• It provides a comprehensive, in-depth picture of the organization’s ap-
plication portfolio. Note the lesson of Y2K: what an enterprise does not 
know about its applications can indeed hurt it. 

• It gives the CIO or ISV CEO another strategic weapon: the ability to mi-
grate at will rather than being forced to make or buy. 

Implementing the Software Evolution Strategy 
Initial experience suggests that the following types of tools are highly useful where 
an ISV or IT executive is implementing a software evolution strategy: 

1. Asset management and cross-project management tools — Asset manage-
ment tools record the extent of the software portfolio; cross-project man-
agement tools, such as those from IDe, allow the CIO to monitor the pro-
gress of evolution across the full range of a company’s ongoing software-
improvement projects. 

2. Upgrade-in-place and migration tools — Suppliers such as MigraTEC (mi-
gration) and Unisys (upgrade in place) provide these tools for particular ISV 
or IT evolution needs. Agile programming tools ease the process of upgrad-
ing existing code rapidly and are especially effective aids in a software evo-
lution strategy. 

Key New Approaches: Omnicompetence 
For applications that need to access multiple data sources — such as enterprise por-
tals or business process integration solutions — it is possible to simplify data access 
using “omnicompetence” (another Simon Williams concept). Omnicompetent code 
can operate on metadata from multiple databases, allowing the reuse of code no 
matter what database is accessed. Enterprise information integration (EII) solutions 
are examples of omnicompetence (see the Aberdeen White Paper titled Information 
Aggregation: Data Without Frontiers [March 2003]). 

New Approaches Are Effective at Building New Applications, Too 
Agile development solutions incorporating technologies that effectively handle the 
new development imperatives are well suited not only for upgrading existing appli-
cations but also for building new ones. Often, when building new applications to-
day, ISVs and IT shops must change directions in the middle of the development 
project to respond to a fast-changing market and fast-moving users. The new agile 
tools are much better than Internet tools at responding rapidly to changes in direc-
tion — both because they support shorter development life cycles and because they 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  12 

operate at a higher (transactional coding and omnicompetence) level, ensuring that 
changes in one area are much less likely to cause arcane problems in another area. 

Moreover, high-level coding (and especially for data access) is much more pro-
grammer productive than a 3GL for writing new applications. Some past estimates of 
the advantages of high-level transactional coding indicate that this higher level cod-
ing can deliver 50% to 70 % more rapid coding than a 3GL. 

The advantages in new program development of flexible and programmer-
productive, agile approaches are particularly marked in creating data-intensive ap-
plications, such as business-critical order entry systems. By coding data access at the 
metadata level, the new imperative agile development solutions not only improve 
programmer productivity but also allow users to change data structures and data 
formats on the fly during development, as user requirements change. When the re-
sultant application must be upgraded by changing data formats, omnicompetence 
sharply decreases the likelihood that those changes will cause unforeseen disasters 
in production applications. 

Four J’s Genero — An Example of “Mature” Agile Development Solutions  
Four J’s Genero (described on Four J’s web site, www.4js.com) is a highly flexible 
architectural layer and advanced 4GL designed to support rapid development and 
upgrading of complex applications. Four J’s Genero Studio provides a highly pro-
ductive development interface to Genero. Together, these products form the founda-
tion of a development solution that meets the “new development criteria” cited 
above. 

Genero provides component libraries to access a wide variety of databases, user-
interface devices, and programs (via Web services support), as shown in Figure 1. 
These high-level features, as noted in Figure 1, are especially useful for program-
mers who are seeking to achieve flexibility via application omnicompetence, as well 
as to ease software upgrades and evolution. Genero’s design and implementation 
embeds a rich body of knowledge about “best practices” for user display, database 
access, multitier application communication, and business logic development — fur-
ther improving programmer productivity and agile programming practices. Genero’s 
direct benefit to programmers is the ability to rapidly generate, prototype, and en-
hance feature-rich business applications. 

Genero’s 4GL offers a high-level programming interface to the Genero architecture, 
providing a compact and easily understood and utilized syntax for rapidly develop-
ing interfaces, database access, and business logic. 

Four J’s Genero Studio gives VPE-style developer access to the functionality of Gen-
ero, providing visual tools for rapid generation of business logic and surrounding 
user interfaces and data access. These are combined in a highly integrated UDE 
whose common look and feel speeds developer training and coding. 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 

http://www.4js.com/


Imperatives for a New Development Age: The Party’s Over  13 

Figure 1: Genero’s Architecture 

Source: Four J’s, January 2004 

Genero Studio provides an exceptional level of real-time application tuning and 
analysis for a high level of ongoing performance. Extensive, centralized collaborative 
programming features allow coordinated, intermittently connected, and stand-alone 
programming. Versioning, debugging at the user site, and storage of user architec-
tural information allow agile customization and upgrade of user or customer (for a 
VAR) applications. 

How Genero Studio Meets the New Criteria 
Genero Studio offers the following features: 

• Agile programming — Its ability to support high-level and team pro-
gramming, as well as generate and enhance prototypes or completed 
applications, makes Genero Studio well suited to agile programming 
that requires frequent interactions with end-users and code that is easily 
upgraded or changed. Genero provides — and Genero Studio creates — 
highly modular, flexible components that are therefore “pre-refactored” 
for ease of upgrade. 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  14 

• Performance/scalability — The Genero pre-built architectural layer for 
interacting with the database and the user typically improves application 
performance. The compactness of the Genero 4GL language keeps the 
applications compact, with all of the well-known benefits of smaller pro-
grams — increased reliability, performance, and scalability. Genero Stu-
dio’s focus on data-access programming ensures that resulting applica-
tions scale as the size of the database increases. 

• Programmer productivity — Genero Studio’s 4GL (for high-level busi-
ness logic coding) and VPE are time-tested ways of speeding develop-
ment by up to an order of magnitude. Genero Studio’s simplicity that 
hides the details of architectural complexities is especially effective in 
Web application programming, in which developers must often deal 
with client, server, and ASP/JSP components, as well as back-end object-
to-relational data access. Genero Studio allows users to create modules 
rapidly so that developers can respond to end-user requirements or de-
mand changes more rapidly. Genero Studio allows developers to write 
data-access code at the metadata level. Genero Studio also manages de-
tails of user input verification, communication between client devices 
and the application, and so on. Genero Studio therefore allows high-
level programming of data-driven programs that are a major “time sink” 
for traditional programming. 

• Life cycle support — Genero Studio supports “model”-type design of 
applications, drag-and-drop coding, extensive testing features, and 
automated deployment features. It allows rapid, automated generation 
of production code from GUI design. 

• Flexibility — Genero Studio’s support for a wide variety of clients, serv-
ers, and architectures, with easy recompilation to support new front-end 
devices, allows a large amount of “user choice” of application character-
istics and interfaces. Genero Studio continues to demonstrate an ability 
to incorporate new technologies, such as the Web and Web services, and 
to allow users to upgrade existing applications to incorporate these 
technologies rapidly and with minimal impact on business-critical appli-
cations. 

• Software evolution — Genero Studio’s support for host-based and cli-
ent-server applications — as well as Web applications, and for Web-
enabling and Web-servicizing legacy applications — ensures that existing 
applications can be upgraded relatively easily, decreasing development 
and administration costs. 

• Omnicompetence — Genero Studio’s support for high-level “model,” 
metadata, and business-logic coding improves programmer productivity 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  15 

and ensures minimal impact when the data underlying an application 
must be changed in format or structure. Similarly, user interfaces and da-
tabase access are specified at an abstract level, so a single application can 
run automatically across disparate databases and client platforms. 

Usefulness for New Applications 
As noted above, Genero Studio’s ability to meet the new criteria makes it an excel-
lent choice for not only upgrading existing applications but also creating new en-
terprise-scale applications leveraging proprietary information. It is also an excel-
lent choice for developing enhanced business process integration across suites of 
Web service-enabled enterprise applications and for exposing the enterprise proc-
esses to customers, partners, and employees through a variety of client and Web 
service interfaces. 

Aberdeen Conclusions 
As the new imperatives of development — cost cutting and competitive advantage 
by leveraging proprietary information — yield new development patterns — 
greater emphasis on upgrade, shorter development cycles, more agile response to 
changes in midstream — it is becoming ever clearer that today’s basic Java toolsets, 
by themselves and in many cases are not adequate. Java is too low level to be flexi-
ble and programmer productive; programmers must deal with too complex an ar-
chitecture, with JSPs, J2EE, EJBs, very large class libraries, and so on, leading to 
unnecessary paralysis by analysis; in addition, object-relational mismatches can 
cause significant additional design and coding effort. 

The answer is to combine tried-and-true development technologies, such as high-
level transactional code generation and the VPE, with new approaches, such as 
software evolution and omnicompetence, into an agile development solution. 
Toolsets such as Four J’s Genero Studio, overlooked during the Internet “party,” 
are of increasing value in handling the new development imperatives because they 
can combine these technologies effectively. 

The first step for ISVs and IT buyers in handling the new development imperatives 
is to place development toolset buying higher on their list of strategic decisions. 
Problems with programmer productivity, flexibility, and scalability cannot be han-
dled by outsourcing or “throwing more bodies at the problem.” IT must recognize 
that, in initiatives such as implementing Web services, development is a key bottle-
neck and choosing the right agile toolset is a key to solving the bottleneck. 

 

© 2004 Aberdeen Group, Inc. Telephone: 617 723 7890 

260 Franklin Street Fax: 617 723 7897 

Boston, Massachusetts 02110 www.aberdeen.com 
 



Imperatives for a New Development Age: The Party’s Over  16 

To provide us with your feedback on this research, please go to www.aberdeen.com/feedback . 

Aberdeen Group, Inc. 
260 Franklin Street 
Boston, Massachusetts 
02110-3112 
USA 
 

Telephone: 617 723 7890 
Fax: 617 723 7897 
www.aberdeen.com 
 

© 2004 Aberdeen Group, Inc. 
All rights reserved 
January 2004 

Aberdeen Group is a computer and communications  
research and consulting organization closely monitoring 
enterprise-user needs, technological changes, and mar-
ket developments. 

Based on a comprehensive analytical framework,  
Aberdeen provides fresh insights into the future of  
computing and networking and the implications for  
users and the industry. 

Aberdeen Group performs projects for a select group  
of domestic and international clients requiring strategic 
and tactical advice and hard answers on how to manage 
computer and communications technology. This docu-
ment is the result of research performed by Aberdeen 
Group that was underwritten by Four J’s. Aberdeen 
Group believes its findings are objective and represent 
the best analysis available at the time of publication. 

 

 

The second step for ISVs and IT buyers is to focus on development toolsets that 
effectively combine the right technologies and methodologies to handle the new 
development imperatives and improve development agility. For that reason, tool-
sets such as Four J’s Genero Studio should be at the top of the list in most devel-
opment-toolset buying decisions. 
 

http://www.aberdeen.com/ab_company/hottopics/feedback/

	Executive Overview
	Internet Tools Do Not Meet the New Needs
	Table 1: The Programmer-Productivity Effects of T
	The New Criteria for Development Solutions: Agile Programming
	Table 2: Criteria/Technologies for New Development Solutions
	Flexibility
	Life Cycle Support
	Key New Approaches: Software Evolution
	Key New Approaches: Omnicompetence
	New Approaches Are Effective at Building New Applications, Too
	Four J’s Genero — An Example of “Mature” Agile De
	Figure 1: Genero’s Architecture
	Aberdeen Conclusions
	The second step for ISVs and IT buyers is to focus on development toolsets that effectively combine the right technologies and methodologies to handle the new development imperatives and improve development agility. For that reason, toolsets such as Four

